Mat.Nr.:				
Studienkennz.:				
Bitte keinen Rotstift verwenden!				
105.078 Einfuehrung in Stochastische Prozesse und Zeitreihenanalyse				
Vorlesung, 2008S, 3.0h November 2008 Hubalek/Scherrer				
(Dauer 90 Minuten, alle Unterlagen sind erlaubt)				
Anmeldung zur mündlichen Prüfung auf der Liste!				
	Bsp.	Max.	Punkte	
	1	5		

 $\frac{4}{\sum}$

Name:

- 1. (y_t) sei ein stationärer Prozess mit $Ey_t = 1$ und Autokovarianz-Funktion $\gamma(0) = 1$, $\gamma(1) = \frac{1}{3}$.
 - (a) Berechnen Sie die Einschritt Prognose $y_{t+1|t,1}$ und die entsprechende Prognosefehler-Varianz $\sigma_{1,1}^2$.
 - (b) Nehmen Sie nun an, dass der Prozess ein AR(1) Prozess ist und verwenden Sie die Yule-Walker Gleichungen, um eine AR(1) Darstellung der Form

$$y_t = ay_{t-1} + \epsilon_t$$

mit |a| < 1 zu erhalten. (Berechnen Sie a und die Varianz des weißen Rauschen (ϵ_t) .)

- (c) Mittels dieser AR Darstellung ist nun die vollständige ACF $\gamma(k)$, $k \geq 0$ zu berechnen.
- 2. Gegeben sei ein Wahrscheinlichkeitsraum (Ω, \mathcal{F}, P) mit einer iid Folge von $N(-\frac{1}{2}, 1)$ -Zufallsvariablen $(X_n)_{n\geq 1}$. Sei $(S_n)_{n\geq 0}$ die entsprechende Irrfahrt, also

$$S_0 = 0, \quad S_n = \sum_{k=1}^n X_k \quad (n \ge 1)$$

und $(\mathcal{F}_n)_{n\geq 0}$ die von $(S_n)_{n\geq 0}$ erzeugte Filtration.

- (a) Sei $Y_n = \exp(S_n)$. Berechnen Sie $E[Y_n | \mathcal{F}_{n-1}]$.
- (b) Zeigen oder begründen Sie sorgfältig: Der Prozeß $(L_n)_{n\geq 0}$ ist ein Martingal, wobei

$$L_0 = 0, \quad L_n = \sum_{k=1}^n \frac{\Delta Y_k}{Y_{k-1}} \quad (n \ge 0)$$

$$mit \ \Delta Y_k = Y_k - Y_{k-1}.$$

- (c) Ist $(L_n)_{n>0}$ eine Irrfahrt? (Begründung!)
- (d) Finden Sie eine möglichst einfache Darstellung für L_n , ausgedrückt durch (X_k) , ohne (S_k) und (Y_k) .
- (e) Bestimmen sie den vorhersehbaren Anteil in der Doob-Zerlegung von (L_n) .
- 3. (ϵ_t) sei weißes Rauschen mit Varianz $E\epsilon_t^2 = 1$. Weiters sind zwei lineare Filter a(L) = 1 + 2L und b(L) = 1 2L gegeben. (L ist der Lag-Operator.) Betrachten Sie folgende MA Prozesse und berechnen Sie deren Auto-Kovarianzfunktion $\gamma(k)$:
 - (a) $y_t = a(L)\epsilon_t$
 - (b) $y_t = b(L)\epsilon_t$
 - (c) $y_t = a(L)b(L)\epsilon_t$
 - (d) $y_t = b(L)a(L)\epsilon_t$
 - (e) $y_t = a(L)\epsilon_t + b(L)\epsilon_t$

Betrachten Sie nun zwei (allgemeine) Filter der Form $a(L) = 1 + a_1 L$ und $b(L) = 1 + b_1 L$. Zeigen Sie, dass der Prozess $y_t = a(L)b(L)\epsilon_t$ dann und nur dann ein weißes Rauschen ist, wenn $a_1 = b_1 = 0$.

- 4. Gegeben sei eine standard Brownsche Bewegung $(W(t), t \in \mathbb{R}_+)$, die adaptiert zu einer Filtration $(\mathcal{F}(t), t \in \mathbb{R}_+)$ ist.
 - (a) Zeigen Sie sorgfältig: $(Z(t), t \in \mathbb{R}_+)$ ist ein Martingal, wobei $Z(t) = e^{W(t) t/2}$.
 - (b) Zeigen Sie: $(R(t), t \in \mathbb{R}_+)$ mit $R(t) = \log(1 + Z(t))$ ist ein Supermartingal.
 - (c) Berechnen Sie das gemischte Moment $\mu_{a,b}(s,t) = E[Z(s)^a Z(t)^b]$ für $a \in \mathbb{N}, b \in \mathbb{N}$ und 0 < s < t.
 - (d) Sei $(B(t), 0 \le t \le 1)$ ein Prozess mit B(t) = W(1-t) W(1). Beschreiben Sie seine endlichdimensionalen Verteilungen.