Mat.Nr.:				
Studienkennz.:				
Bitte keinen Rotstift verwenden!				
105.057 Finanzmathematik Vorlesung, 2007S, 4.0h 25. Juni 2008 Schachermayer				
(Dauer 90 Minuten, alle Unterlagen sind erlaubt)				
Anmeldung zur mündlichen Prüfung per e-mail secr@fam.tuwien.ac.at (preferred) bzw. im Sekretariat, FH 7.Stock, Tel. 01 / 58801 - 10511,				
	Bsp.	Max.	Punkte	
	1	5		
	2	5		

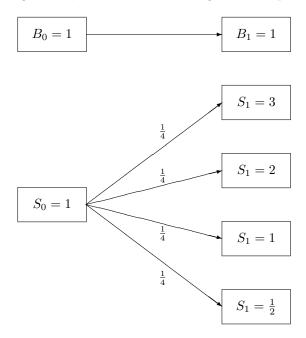
15

Name:

1. (a) Zeigen Sie mit dem risikoneutralen Bewertungsprinzip (und ohne explizite Verwendung eines Arbitrage-Portfolios), dass ein arbitrage-freier Preis p_0 einer Europäischen Put-Option die Ungleichung

$$(e^{-rt}K - S_0)_+ < p_0 < e^{-rT}K$$

erfüllt.


(b) Sei $0 < K_1 < K_2$. Betrachten Sie Europäische Call-Optionen auf das gleiche (dividendenlose) Asset, mit gleicher Maturity und mit Strikes K_1 bzw. K_2 und Preisen $c_0(K_1)$ bzw. $c_0(K_2)$. Finden Sie eine obere und eine untere Schranke für einen arbitrage-freien Preis Π_0 eines Portfolios, das aus einer long position in einen Europäischen Call-Option mit Strike K_1 und einer short position in einem Europäischen Call-Option mit Strike K_2 besteht (Begründung).

Es gelten die üblichen Voraussetzungen und Bezeichnungen für Strikes, Maturities, keine Dividende, risikolose Verzinsung etc.

- 2. (a) Berechnen Sie den arbitrage-freien Preis der Europäischen Asset-or-nothing Option, deren Payoff durch $S_T I_{(S_T > K)}$, also S_T wenn $S_T > K$ und 0 sonst, beschrieben wird.
 - (b) Berechnen Sie das Delta der Asset-or-nothing Option.

Verwenden Sie das Black-Scholes Modell mit den üblichen Voraussetzungen und Bezeichnungsweisen.

3. Betrachten Sie das durch folgenden Quadrinomial-Baum dargestellte Einperioden-Finanzmarktmodell.

Diese Grafik beschreibt den Wahrscheinlichkeitsraum (Ω, \mathcal{F}, P) , wobei $\Omega = \{\omega_1, \dots, \omega_4\}$, \mathcal{F} die Potzenzmenge, und P die diskrete Gleichverteilung of Ω ist. Weiters ist $S_1(\omega_1) = 3, \dots, S_1(\omega_4) = \frac{1}{2}$ (von oben nach unten).

- (a) Ist der Markt aus Bond und Stock arbitrage-frei? Vollständig? (Präzise Begründung!)
- (b) Weiters werden folgende Optionen gehandelt:

 - eine Call-Option mit Strike $\frac{5}{2}$ und Maturity 1; ihr Preis zur Zeit 0 ist $\frac{1}{20}$. eine Put-Option mit Strike $\frac{3}{2}$ und Maturity 1; ihr Preis zur Zeit 0 ist $\frac{7}{10}$.

Ist der erweiterte Markt aus Bond, Stock, Call- und Put-Option arbitrage-frei? Vollständig? (Präzise Begründung!).