White Paper on Genesis:

Delva, P., Altamimi, Z., Blazquez, A. et al. GENESIS: co-location of geodetic techniques in space. Earth Planets Space 75, 5 (2023). https://doi.org/10.1186/s40623-022-01752-w

Reviewed Publications:

Anderson, J.M., Beyerle, G., Glaser, S. et al. Simulations of VLBI observations of a geodetic satellite providing co-location in space. J Geod 92, 1023–1046 (2018). https://doi.org/10.1007/s00190-018-1115-5

Böhm, J., Wolf, H. Opportunities with VLBI Transmitters on Satellites. In: International Association of Geodesy Symposia. Springer, Berlin, Heidelberg (2024). https://doi.org/10.1007/1345_2024_240

Bury, G., Sośnica, K., Zajdel, R., Strugarek, D., Hugentobler U. Geodetic datum realization using SLR-GNSS co-location onboard Galileo and GLONASS. Journal of Geophysical Research - Solid Earth, Vol. 126 No. 10 (2021). https://doi.org/10.1029/2021JB022211 (SLR-GNSS co-location in space onboard Galileo and GLONASS satellites and the comparison between local ties measured on the ground with those reconstructed using the satellite co-location.)

Bury, G., Sośnica, K., Zajdel, R., Strugarek, D., Hugentobler U. Determination of precise Galileo orbits using combined GNSS and SLR observations. GPS Solutions, Vol. 25 No. 11, pp. 1-13 (2021). https://doi.org/10.1007/s10291-020-01045-3 (Precise orbit determination of Galileo satellites using the SLR and GNSS combination at the observation level with the elimination of systematic effects in the GNSS-based orbits due to solar radiation pressure.)

Flohrer, C., Otten, M., Springer, T., Dow, J. Generating precise and homogeneous orbits for Jason-1 and Jason-2. Advances in Space Research, 48, pp. 152-172 (2011). https://doi.org/10.1016/j.asr.2011.02.017 (Demonstration of LEO satellite co-location for GPS, DORIS and SLR techniques. Precise and homogeneous orbits referring to the same reference frame are generated for the altimetry satellites Jason-1 and Jason-2. GPS, DORIS, and SLR measurements of the two LEOs are used in a combined data analysis.)

Hellerschmied, A., McCallum, L., McCallum, J., Sun, J., Böhm, J., Cao, J. Observing APOD with the AuScope VLBI Array. Sensors 18(5):1587 (2018). https://doi.org/10.3390/s18051587 (Technical realisation of VLBI observations to the APOD-A satellite.)

Herrera Pinzón, I. D., Rothacher, M. Impact of Coordinate- and Tropospheric Ties on the Rigorous Combination of GNSS and VLBI. In International Association of Geodesy Symposia, Springer Berlin Heidelberg (2023). https://doi.org/10.1007/1345_2023_195 (Combination of GNSS and VLBI observations on the observation level using Bernese)

Klopotek, G., Hobiger, T., Haas, R. et al. Geodetic VLBI for precise orbit determination of Earth satellites: a simulation study. J Geod 94, 56 (2020). https://doi.org/10.1007/s00190-020-01381-9

Kur, T., Sośnica, K., Kalarus, M. Prospects of GENESIS and Galileo joint orbit and clock determination. J Geod 98, 51 (2024). https://doi.org/10.1007/s00190-024-01869-8

Montenbruck, O., Steigenberger, P., Thoelert, S. et al. GNSS visibility and performance implications for the GENESIS mission. J Geod 97, 96 (2023). https://doi.org/10.1007/s00190-023-01784-4 (Simulation of GNSS tracking conditions and synthetic observations for Genesis.)

Plank, L., Hellerschmied, A., McCallum, J., Böhm, J., Lovell, J. VLBI observations of GNSS-satellites: From scheduling to analysis. J. Geod 7, 91, pp. 867–880 (2017). https://doi.org/10.1007/s00190-016-0992-8 (Technical realisation of VLBI observations to GNSS satellites.)

Pollet, A., Coulot, D., Biancale, R. et al. GRGS numerical simulations for a GRASP-like mission. J Geod 97, 45 (2023). https://doi.org/10.1007/s00190-023-01730-4 (Simulation of combination of all four techniques with a GRASP-like satellite.)

Raut, S., Glaser, S., Mammadaliyev, N., Schreiner, P., Neumayer, K.H., Schuh, H. (2023). Assessing the Potential of VLBI Transmitters on Next Generation GNSS Satellites for Geodetic Products. In: International Association of Geodesy Symposia, Springer, Berlin, Heidelberg. https://doi.org/10.1007/1345_2023_217 (VLBI observations to satellites and quasars with precise orbit determination.)

Schartner, M., Böhm, J. VieSched++: A New VLBI Scheduling Software for Geodesy and Astrometry. Publications of the Astronomical Society of the Pacific Vol. 131, Issue 1002, p. 084501 (2019). https://doi.org/10.1088/1538-3873/ab1820 (State-of-the-art VLBI scheduling software package capable of including satellite observations based on TLE files)

Schunck, D., McCallum, L., Calves, G.M., Simulating VLBI observations to BeiDou and Galileo satellites in L-band for frame ties. Journal of Geodetic Science, 14, (2024). https://doi.org/10.1515/jogs-2022-0168

Sośnica, K., Jäggi, A., Thaller, D., Beutler, G., Dach, R. Contribution of Starlette, Stella, and AJISAI to the SLR-derived global reference frame. J Geod, 88(8), 789-804 (2014). https://doi.org/10.1007/s00190-014-0722-z (Impact of adding LEO satellites with more complex orbit modelling to the standard LAGEOS-based SLR solutions for estimating parameters of the global reference frame.)

Thaller, D., Dach, R., Seitz, M., Beutler, G., Mareyen, M., Richter, B. Combination of GNSS and SLR observations using satellite co-locations. J Geod, 85(5):257-272 (2011). https://doi.org/10.1007/s00190-010-0433-z (The concept of using satellite co-locations as space tie in addition to ERP and geocenter coordinates is described and tested for GLONASS and GPS satellites as co-location for GNSS and SLR. Validation of the local ties with station coordinate estimates from space tie solutions.)

Thaller, D., Sośnica, K., Dach, R., Jäggi, A., Beutler, G., Mareyen, M., Richter, B. Geocenter coordinates from GNSS and combined GNSS-SLR solutions using satellite co-locations. In: IAG Symposia Series, Vol. 139, pp. 129-134 (2014). https://doi.org/10.1007/978-3-642-37222-3_16 (Correlation between geocenter coordinates and orbit modelling aspects based on GNSS-SLR combined solutions using GNSS satellites as space ties. The importance of adding SLR to spherical satellites (here Lageos).)

Thaller, D., Sosnica, K., Steigenberger, P., Roggenbuck, O., Dach, R. Pre-combined GNSS-SLR Solutions: What could be the benefit for the ITRF? In: IAG Symposia Series, Vol. 146, pp. 85-94 (2015). https://doi.org/10.1007/1345_2015_215 (GNSS-SLR combined solutions based on satellite co-locations at GNSS satellites are investigated related to their potential for ITRF-like solutions.)

Wolf, H., Böhm, J. Optimal distribution of VLBI transmitters in the Galileo space segment for frame ties. Earth Planets Space 75, 173 (2023). https://doi.org/10.1186/s40623-023-01926-0 (Determination of station coordinates from VLBI observations to Galileo satellites.)

Zajdel, R., Masoumi, S., Sośnica, K., Gałdyn, F., Strugarek D., Bury G. Combination and SLR validation of IGS Repro3 orbits for ITRF2020. J Geod, Vol. 97 No. 87 (2023), pp. 1-29. https://doi.org/10.1007/s00190-023-01777-3 (Algorithm of GPS, GLONASS, and Galileo orbit combination as the official IGS Repro3 product in ITRF2020. The orbits are evaluated using the comparisons to the combined orbits, as well as using SLR data to Galileo and GLONASS.) 


  • Keine Stichwörter